

B.Sc. PHYSICS <u>SEMESTER – I & II</u>

<u>Syllabus for – UG B.Sc. Programmes</u> <u>Course – CBCS</u>

DETAILED CURRICULUM:

Core Course – PHYSICS PHY-CC -101 (Theory) PHY-CC -102 (Practical)

- The course content has been designed on Semester pattern
- There shall be **01 Theory** paper having **05 Units**. (4 lectures in a week set up by departments)
- There shall be **02 Practicals** 6 lectures) in a week set up by departments
- There shall be **01 Theory paper** of **70 marks** and 2.30 hours duration in University Examination
- There shall be **01 Practical Paper (one experiment from each section i.e. two experiment)** of 10**0 marks** and 04:00 hours duration in University Examination
- There shall be Continuous Internal Evaluation of 30 Marks for theory course.

Course Type	Paper No.	Title of Paper	Total Marks EXT.+ INT* = TOTAL	Passing Standards EXT.+ INT= TOTAL	Total Teaching Hours (in 15weeks)	Credits
Core Course Theory -101	Paper PHY- CC- 101	Vector and Classical Mechanics, Interference and Diffraction, Properties of Matter and Simple Harmonic Motion, Diode Circuit and Network Theorem, X-Ray	70+ 30* = 100	28+12* =40 marks	60 hrs	04
Core Course Practica l -102	Paper PHY- CC- 102	PRACTICAL PHYSICS-1	EXT 100	40 marks	90 hrs	06
	TOTAL		170+30= 200		150 hrs	10

B.Sc. PHYSICS SEMESTER – I

Credit: 04

<u>Syllabus for – UG. B.Sc.</u> <u>Programmes Course – CBCS</u>

Course No - PHY.-CC - 101 (Theory)

Title of the Paper:Vector and Classical Mechanics, Interference and Diffraction, Properties
of Matter and Simple Harmonic Motion, Diode Circuit and Network
Theorem, X-Ray

Marking Scheme: Semester End Examination:		70
	Internal Examination:	<u>30</u>
	TOTAL	100

Unit	Datailad Gullahua		Marks/
Unit	Detaneu Synabus	Hours	Weight
Unit-1	 Vector and Classical Mechanics Surface area as vector Scalar triple product Geometrical interpretation of scalar triple product Rotational behavior of scalar triple product Vector triple product Multi vectors product Reciprocal vector Newton's Laws of motion Mechanics of a particle Equation of motion of a particle a) Motion under constant force b) Motion under a force which depends on time only c) Motion under a force dependent on distance only d) Motion of a particle subjected to a resistive force Examples 	12 hrs	14 marks
Unit-2	 Interference and Diffraction Condition of interference Interference by thin film Interference due to transmitted light Interference by variable thickness (wedge-shaped) film Types of interference : Wave front division and Amplitude division Wave front division: Fresnel Bi-prism Amplitude division: Newton's ring Fresnel's Assumptions Fresnel Half Period Zones and Rectilinear propagation of light Positive and Negative Zone plate Fraunhoffer diffraction at a single slit Intensity distribution in diffraction pattern of a single slit in fraunhoffer diffraction Examples 	12 hrs	14 marks

MAHARAJA KRISHNAKUMARSINHJI BHAVNAGAR UNIVERSITY NAAC Accreditation Grade "B" (With effect from Academic Year: 2016-17)

Unit-3	 Properties of Matter and Simple Harmonic Motion Definition of stress and strain Hooke's law and elastic constant Strain energy Restoring couple- required to produce torsion and elastic wire with derivation Relation between isothermal and adiabatic elasticities of gases Searl's relation between elastic constant and derivations Characteristics of simple harmonic motion Graphical Method: Composition of two linear simple harmonic motions in the same direction and at right angles with each other Analytical Method: Composition of two linear simple harmonic motions in the same direction and at right angles with each other Lissaious figures Compound pendulum and derivation of time period Examples 	12 hrs	14 marks
Unit-4	 Diode Circuit and Network Theorem The Half wave Rectifier The Fullwave Rectifier The Bridge Rectifier Types of Filter Super-Position Theorem Norton's Theorem Thevenin's Theorem Examples 	12 hrs	14 marks
Unit-5	 X-Ray Origin of X-ray Properties of X-ray Wave nature of x -ray Laue spot Bragg's law Bragg Spectrometer Absorption of X-ray Application of X-ray Compton effect Examples 	12 hrs	14 marks
		60	70
		hours	marks

B.Sc. PHYSICS SEMESTER – I

Credit: 06

<u>Syllabus for – UG. B.Sc.</u> <u>Programmes Course – CBCS</u>

<u>Course No – PHY.-CC - 102</u>

Title of the Paper: Physics Practical

Marking Scheme:Semester End Examination:100TOTAL100

DETAILED CURRICULUM FOR PRACTICAL

Teaching Hours: 06 hours per week Credits: 06

Detailed Syllabus for Physics practical

SECTION A(General Physics)

- 1 To determine Young's modulus of a given wire.
- 2 To determine expansion coefficient of pressure of constant volume air thermometer and to determine absolute zero

temperature and atmospheric pressure.

- 3 To determine moment of inertia of body with different shapes using bi-filler suspension.
- 4 Calibration of spectrometer with help of prism spectra.
- 5 To determine wavelength of sodium light using Newton's ring.
- 6 To determine refractive index of liquid by using liquid lens method.
- 7 To determine 'g' by bar pendulum .

SECTION B(Electricity and Magnetism)

- 1. To determine wattage and temperature of a given lamp.
- 2. To verify tangent's law using tangent galvanometer.
- 3. To determine low resistance using projection method.
- 4. To determine magnetic moment and pole strength using deflection magnetometer.
- 5. To study bridge rectifier.
- 6. To determine Impedance of coil using series L-R ac circuit.
- 7. To study characteristics of thermistor.

Students have to prepare their Practical journals of Physics for Laboratory work and they have to submit certified journals in the University practical exams. Students are not allowed in the laboratory without certified journals in the University practical examination.

References Books

- 1) Mathematical physics by H.K.Das &Dr. Rama Verma
- 2) Mathematical physics by Rajput
- 3) Nirav college physics paper :101
- 4) Nirav college physics paper :102
- 5) Introduction to classical mechanics by R.G.Takwale & P.S. Puranik
- 6) Classical Mechanics & Properties of Matter by A.B.Gupta
- 7) A textbook of optics by Dr. N. Subrahmanyam & Brij Lal
- 8) Optics by Singh & Agarwal
- 9) Properties of matter by D.S.Mathur
- 10) Electricity and Magnetism by D.N.Vasudev
- 11) Electric circuit analysis by Soni & Gupta
- 12) Electricity and Magnetism by R.Murugeshan
- 13) Nirav college physics paper :202
- 14) Modern physics by Murugeshan
- 15) Modern physics by Basier
- 16) Engineering physics by Dr. M.N. Avadhanulu (S.CHAND'S) Advanced practical physics by Chauhan And Singh
- 17) B.Sc. Practical Physics by C L Arora
- 18) Practical Physics by Kumar and Gupta

B.Sc. PHYSICS <u>SEMESTER – II</u>

Core Course - PHYSICS PHY-CC-201(Theory) PHY-CC-202(Practical)

- The course content has been designed on **Semester pattern**
- There shall be **01 Theory** paper having **05 Units** (4 lectures in a week set up by departments)
- There shall be **02 Practical** (6 lectures) in a week set up by departments
- There shall be **01 Theory paper** of **70 marks** and 2.30 hours duration in University Examination
- There shall be **01 Practical Paper (one experiment from each section i.e. two experiments)** of 10**0 marks** and 04:00 hours duration in University Examination
- There shall be Continuous Internal Evaluation for theory course of 30 Marks

Course Type	Paper No.	Title of Paper	Total Marks EXT.+ INT* = TOTAL	Passing Standards EXT.+ INT= TOTAL	Total Teaching Hours (in 15weeks)	Credits
Core Course Theory -201	Paper PHY-CC- 201	Thermodynami cs and entropy, Magnetism and Solid State Physics, AC Bridge and DC Circuit, Modern Physics and Radioactivity, Relativity	70 + 30* = 100	28 + 12* = 40 marks	60 hrs	04
Core Course Practical -202	Paper PHY-CC- 202	PRACTICAL PHYSISC-2	EXT 100	40 marks	90 hrs	06
	TOTAL		170+30= 200		150 hrs	10

B.Sc. PHYSICS SEMESTER – II

Teaching Hours: 04 hours Credit: 04

Syllabus for – UG. B.Sc. Programmes Course – CBCS

<u>Course No – PHY.-CC – 201 (Theory)</u>

Title of the Paper:Thermodynamics and Entropy, Magnetism and Solid State Physics, ACBridge and DC Circuit, Modern Physics and Radioactivity, Relativity

	TOTAL	100
	Internal Examination:	<u>30</u>
<u>Marking Scheme:</u>	Semester End Examination:	70

Unit	Dotailed Syllabus	Teaching	Marks/
Unit	Detaneu Synabus	Hours	Weight
Unit-1	 Thermodynamics and entropy Zeroth, first and second law of thermodynamics Specific heat of gases Application of first law of thermodynamics Adiabatic equation of perfect gas Carnot's theorem Thermodynamic scale of temperature Identity of perfect gas and absolute scale of temperature Change of entropy in reversible and irreversible process Principle of increase of entropy and disorder Third law of thermodynamics in terms of entropy Temperature – Entropy diagram Calculation of entropy for a perfect gas and stream Impossibility of attaining the absolute zero Maxwell's relations Derivation of Clausius - Claperon equation of a gas Examples 	12 hrs	14 marks
Unit-2	 Magnetism and Solid State Physics Classification of Magnetic Materials: Diamagnetic, Paramagnetic, Ferromagnetic Magnetic Properties of materials Langevin's theory for diamagnetic materials(Classical) Hysteresis loop for ferromagnetic substances Ferromagnetic domains Tangent law The concept of lattice Primitive cell and unit cell 7 crystal systems and 14 Bravis lattice Elementary crystal structures: Nacl, ZnS, Diamond, H.C.P. Atomic packing factors Examples 	12 hrs	14 marks

MAHARAJA KRISHNAKUMARSINHJI BHAVNAGAR UNIVERSITY NAAC Accreditation Grade "B" (With effect from Academic Year: 2016-17)

	AC Bridge and DC Circuit		
	• A.C. Bridge introduction and general Bridge balance		
	equation		
	• De-sautty Bridge	12 hrs	
	Maxwell Bridge i. Induction bridge ii. LC bridge		
Unit-3	Anderson Bridge		14 marks
	 R.L. Circuit in series growth and decay 		
	 R.C. circuit in series growth and decay 		
	• Series LCR circuit and its analysis and condition of		
	oscillation		
	Quality factor		
	Examples		
	Modern Physics and Radioactivity		
	Thermal radiation		
	Black body radiation		
	Planck's radiation law		
	 Rayleigh – Jeans law 		
	 Wien's law and Wien's Displacement law 		
	De Broglie hypothesis		
Unit-4	Uncertainty principle	12 hrs	14 marks
	• Laws of Disintegration : Activity and its units , Half-life ,		
	Average life (Mean)		
	Radioactive series		
	Law of successive Disintegration		
	• Radioactive Equilibrium: 1) Permanent or secular		
	equilibrium 2) Transient equilibrium		
	• Examples		
	Relativity		
	Frame of reference		
	Newtonian Relativity		
	Galilean transformation equations		
	• The Ether hypothesis and the Michelson-Morley		
Unit-5	experiment with result	12 hrs	14 marks
	 Postulates of special theory of relativity 		
	The Lorentz transformation equations		
	Length contraction and Time dilation		
	 Mass energy equivalence (E=mc²) 		
	• Examples		
	•	(0)	7 0 1
		60 hours	70 marks

B.Sc. PHYSICS SEMESTER – II

Credit: 06

<u>Syllabus for – UG. B.Sc.</u> <u>Programmes Course – CBCS</u>

<u>Course No – PHY.-CC - 202</u>

Title of the Paper:Practical Physics-2

Marking Scheme:Semester End Examination:100TOTAL100

DETAILED CURRICULUM FOR PRACTICAL

Teaching Hours: 06 hours per week Credits: 06

	Detailed Syllabus for Physics
	SECTION A(General Physics)
1	To determine temperature coefficient of thermal conductivity by Lee's method.
2	To determine wavelength of mercury spectral lines with the help of grating method.
3	To determine Poisson's ratio of rubber tube.
4	To study resonator to determine unknown frequency of tuning fork.
5	To determine Melde's tuning fork frequency and to verify laws of vibrating string.
6	To determine radius of curvature of a given lens and refractive index of glass using optical lever method.
7	To determine moment of inertia of a disk using Tortional pendulum.
	SECTION B (Electricity and Magnetism)
1	To determine resistivity of electrolyte using Koholaraus bridge.
2	To determine ratio of magnetic moments of two bar magnets using vibration
	magnetometer.
3	To determine resistance of galvanometer and Leclance cell using P.O.Box Kelvin-Mens methods.
4	To study magnetic field of coil using Stuart gee galvanometer.
5	To determine self-inductance of a given coil using Anderson bridge.
6	To determine ratio of capacity of two capacitors using desauty bridge.
7	To study parallel resonance of L.C.R. circuit.
	Students have to prepare their Practical journals of Physics for Laboratory work
	and they have to submit certified journals in the University practical exams.
	Students are not allowed in the laboratory without certified journals in the
	University practical examination.

References Books

- 1. Thermodynamics and statistical physics by J.P. Agarwal
- 2. Electricity and Magnetism by D.N.Vasudev
- 3. Electricity and Magnetism by R.Murugeshan
- 4. Elements of Solid State Physics by S.O.Pillai
- 5. Nirav college physics
- 6. Electricity and Electronics by D.C.Tayal
- 7. Electric circuit analysis by Soni & Gupta
- 8. Nirav college physics paper :102
- 9. Modern physics by Murugeshan
- 10. Modern physics by Basier
- 11. Modern physics by Aruldas & P Rajagopal
- 12. Introduction to Nuclear and Particle Physics By V.K.Mittal & R.C. verma
- 13. Advanced practical physics by Chauhan And Singh
- 14. B.Sc.Practical Physics by C L Arora
- 15. Practical Physics by Kumar and Gupta